
Deep Neural Network Acceleration in Non-Volatile
Memory: A Digital Approach

Shaahin Angizi and Deliang Fan
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

Email: angizi@knights.ucf.edu, dfan@ucf.edu

Abstract—Latest algorithmic development has brought com-
petitive classification accuracy for neural networks despite
constraining the network parameters to ternary or binary
representations. These findings show significant optimization
opportunities to replace computationally-intensive convolution
operations (based on multiplication) with more efficient and less
complex operations such as addition. In hardware implemen-
tation domain, processing-in-memory architecture is becoming
a promising solution to alleviate enormous energy-hungry data
communication between memory and processing units, bringing
considerable improvement for system performance and energy
efficiency while running such large networks. In this paper,
we review several of our recent works regarding Processing-in-
Memory (PIM) accelerator based on Magnetic Random Access
Memory computational sub-arrays to accelerate the inference
mode of quantized neural networks using digital non-volatile
memory rather than using analog crossbar operation. In this
way, we investigate the performance of two distinct in-memory
addition schemes compared to other digital methods based on
processing-in-DRAM/GPU/ASIC design to tackle DNN power
and memory wall bottleneck.

Index Terms—Depp Neural network acceleration, In-memory
computing, Magnetic Random Access Memory

I. INTRODUCTION

To reduce the massive MAC operations and memory re-

quirement in Deep Convolutional Neural Networks (DNN), re-

searchers have proposed various quantized/binarized DNNs by

limiting inputs, weights or gradients to be quantized/ binarized

specifically in forward propagation [1], [2].The DoReFa-Net

achieves high accuracy over both SVHN and ImageNet data-

sets with various low bit-width configurations after applying

quantization methods [1]. Besides, the extremely-quantized

Binary Neural Networks (BNNs) have obtained close accuracy

to existing DNNs [2]. An identical yet updated version of bi-

nary training has been also applied for Generative Adversarial

Networks (GANs) [3] to reduce the memory utilization, thus

improving the hardware deployment efficiency.

From DNN/GAN accelerator architecture perspective, the

isolated processing and memory units (i.e., GPU or CPU)

are connected through buses which has dealt with a wide

variety of challenges, i.e. congestion at I/Os, long memory

access latency, limited memory bandwidth, huge data transfer

energy and leakage power for saving network parameters in the

volatile memory [4]. To alleviate such concerns, Processing-in-

Memory (PIM) platforms has been widely explored in recent

accelerators design [4]–[13] to bring a potential solution for

memory wall challenge. The major idea of PIM is to realize

computational logic units inside the memory to process data

utilizing the inherent memory parallelism and huge internal

memory bandwidth. Such mechanism is expected to bring

significant efficiency in the off-chip data transfer latency

and energy. Meanwhile, a lot of research efforts have been

carried out in emerging technology based on Non-Volatile

Memory (NVM), such as resistive RAM (ReRAM) [4], Mag-

netic RAM (MRAM) and etc. Spin-Transfer Torque Magnetic

Random Access Memory (STT-MRAM) [14] and Spin-Orbit

Torque Magnetic Random Access Memory (SOT-MRAM) [5]

are energy-efficient and high performance candidates, mainly

owning to superior endurance, low switching energy, CMOS

technology compatibility, etc. By leveraging such intrinsic

resistive property, the bulk bit-wise in-memory operations such

as AND/OR/XOR have been implemented through the method

of routed sensing [15]–[17], that opens a novel route to realize

efficient PIM platforms. Although, this effort has been limited

to fundamental logic operations so far. Such functions are

not necessarily applicable to many tasks except by imposing

multi-cycle operations [16], [18] to implement more complex

combinational logics such as addition.

In this paper, we review several of our recent works about

acceleration of in-memory addition operations that could be

used in Binary-Weight DNNs (BWNNs) in an SOT-MRAM

based in-memory computing platform, based on set of mi-

croarchitectural and circuit-level designs.

II. BINARY-WEIGHT NEURAL NETWORKS

DNN performs in two distinct modes, in training mode, the

configuration parameters of layers are computed by training

the network on pre-classified images, and in inference mode,

test images are fed to the network for examination. As

mentioned earlier, Multiplication and Accumulation operations

(MAC) accounts for the most arithmetic operations [19] used

in both modes. To remove the need for massive multiplication

operations and memory storage, researchers have developed

various Binary-Weight DNNs (BWNN) by constraining the

weights to binary values in forward propagation. BinaryCon-

nect [2] achieves close results to full-precision networks on

MNIST and CIFAR-10 data-sets by training the networks with

binary weights (-1, +1). This method can potentially replace

computationally-intensive multiplication operations with much

simpler complement addition/subtraction operations [19]. Such

replacement remarkably reduces weight storage requirements.

The following equation [2] gives the binarization functions

in deterministic and stochastic way for wfp (floating point

weights):

2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

978-1-7281-5520-3/19/$31.00 ©2019 IEEE

20
19

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

N
an

os
ca

le
 A

rc
hi

te
ct

ur
es

 (N
A

N
O

A
R

C
H

) 9
78

-1
-7

28
1-

55
20

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 1

0.
11

09
/N

A
N

O
A

R
C

H
47

37
8.

20
19

.1
81

29
7

Authorized licensed use limited to: University of Central Florida. Downloaded on August 01,2020 at 21:42:44 UTC from IEEE Xplore. Restrictions apply.

wb,De =

{
+1, wfp ≥ 0
−1, wfp < 0

, wb,St =

{
+1, p = σ(wfp)
−1, 1− p

(1)

where σ denotes a hard sigmoid function that determines

the distribution probability:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (2)

Now, we present the MRAM platform to accelerate BWNNs

in the PIM context.

III. PROCESSING-IN-MRAM ACCELERATOR

The presented accelerator architecture is depicted in Fig. 1a

with computational SOT-MRAM sub-arrays, kernel and image

banks, and a Digital Processing Unit (DPU) with three sub-

components as represented by Binarizer, Activation Function,

and Batch Normalization. The platform is mainly controlled

by Ctrl (located in each sub-array) to run whole BWNNs.

In the first step, with Kernels (W) and Input feature maps

(I) that are respectively saved in Kernel and Image Banks,

W has to be instantly binarized for mapping into sub-arrays.

Note that this doesn’t apply to the first layer [1]. Moreover,

binarized shared kernels will be used for different inputs.

This operation is implemented through DPU’s Binarizer-Bin.

(shown in Fig. 1a) and then outputs are sent to the sub-arrays,

developed to handle the computational load employing PIM

methods. In the second and third steps, as will be throughly

explained in the next subsections, the parallel computational

sub-arrays perform to feature extraction employing combining

and parallel compute. schemes. Eventually, the accelerator’s

DPU activates the resultant feature map to complete the fourth

step by producing output feature map.

Conv (I,W) A A

B

AA

B

C

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

W
BL

1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

Fig. 1. (a) MRAM accelerator platform, (b) Computational sub-array design.

A. Sub-array with Reconfigurable Sense Amplifier

Fig. 1b illustrates the in-memory computing sub-array ar-

chitecture implemented by SOT-MRAM. This sub-array is

basically composed of a Memory Row Decoder (MRD), a

Memory Column Decoder (MCD), a Write Driver (WD)

and n Sense Amplifier (SA) (n ∈ # of columns) that are

adjustable by Ctrl to implement a dual mode computation

i.e. memory write/read and in-memory logic operations. SOT-

MRAM device is a composite device of a spin Hall metal

(SHM) and a Magnetic Tunnel Junction (MTJ). Considering

MTJ as the main storage element, the parallel magnetization

resistance in both magnetic layers is represented by ‘0’ and is

lower than that of anti-parallel magnetization resistance (‘1’).

Every SOT-MRAM bit-cell in computational sub-arrays is

connected to five controlling signals namely Write Word Line

(WWL), Write Bit Line (WBL), Read Word Line (RWL), Read

Bit Line (RBL), and Source Line (SL). The computational sub-

array is mainly developed to realize the computation between

in-memory operands using two different mechanisms as called

two-row activation and three-column activation. These mech-

anisms will be later used to respectively implement bulk bit-

wise in-memory AND and addition/subtraction (add/sub).
a) Bit-line Computation Mode: The presented SOT-

MRAM sub-array is developed to realize the bulk bit-wise in-

memory logic operations between every two or three operands

positioned in the similar bit-line. Generally, in the 2-/ 3-

input in-memory logic method, every two/three bits stored

in the identical column are selected with the MRD [20] and

simultaneously sensed by SA connected to the same bit-

line. Accordingly, a programmable SA’s reference selected

by Ctrl will be compared with the equivalent resistance of

such parallel connected bit cells and their cascaded access

transistors after injecting a small amount of current over

resistors. Through selecting different reference resistances e.g.

RAND2 and ROR2, the SA can perform basic 2-input in-

memory Boolean functions AND and OR, respectively. For

example, to realize AND operation, Rref is set at the midpoint

of RAP //RP (‘1’,‘0’) and RAP //RAP (‘1’,‘1’). With the

data organization shown in Fig. 1b, where A and B operands

correspond to M1 and M2 memory cells, respectively, 2-

input in-memory method outputs AB in only one memory

cycle. The idea of voltage comparison between Vsense and

Vref is shown on Fig. 2 for different operations. The reconfig-

urable SA can also provide 2-input NOR, NAND functions

through the complementary outputs. Here, we present two

reconfigurable SAs [8], [21], as shown in Fig. 3, that can

be used alternatively through a direct connection to the same

computational sub-array BL to perform the computation.

VP,P VAP,PVAP,AP

ANDOR

VP VAP

Read

Vsense

RM
1

R1
Ise

ns
e

RM
2

R2

SA

RA
ND

2
 o

r

Ire
f

Vref

Vsense

RM
1

R1
Ise

ns
e

SA

RM

Ire
f

Vref

VP,P,P VP,P,AP VAP,AP,AP

MAJ

Vsense

RM
1

R1

Ise
ns

e
RM

2
R2

SA
RM

AJ

Ire
f

VrefRM
3

R3

VP,AP,AP

RO
R2

Fig. 2. Voltage comparison between Vsense and Vref for (a) read, (b) 2-input,
(c) 3-input in-memory logic operation.

b) SA-I: The SA-I, as shown in Fig. 3a, has 2 sub-SAs

and 4 reference-resistance branches that could be enabled by

Enable bits (ENM , ENOR2, ENMAJ , ENAND2) by the Ctrl

to implement both memory and computation operations based

on Table I. The memory and single-threshold logic functions

could be readily realized only by activating one enable bit

at a time. As an instance, by enabling ENAND2, 2-input

AND/NAND function is carried out on the bit-line between

two operands. Besides, two enables can be activated at a

2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 01,2020 at 21:42:44 UTC from IEEE Xplore. Restrictions apply.

Vref1

RA
ND

2

V s
en
se

Vref2

Iref

RO
R2

RM

Iref
Ise

ns
e

RM
AJ

Vsense

Sum

EN
M

EN
N

O
R

3

EN
O

R
2

EN
M

AJ

EN
AN

D
3

EN
AN

D
2

(ENM , ENOR3 , ENOR2 , ENMAJ , ENAND3 , ENAND2)

T1 T2

Carry

Fig. 3. Sense amplifier designs: (a) SA-I [8], (b) SA-II [21]

time e.g. ENOR2, ENAND2, to generate two separate logic

functions, which is in particular useful to output double-

threshold logic functions like XOR/XNOR. Additionally, 3-

input majority/minority functions (MAJ/MIN) in a single SA’s

sensing cycle can be realized by selecting every three cells

located in a same bit-line by MRD and sensing simultaneously.

Assuming the data organization in Fig. 1b having A, B
and C operands respectively mapped to M1, M2 and M3

cells, the sub-array performs logic AB +AC +BC function

easily by enabling ENMAJ . Fig. 2c shows that RMAJ is

considered at the midpoint of RP //RP //RAP (‘0’,‘0’,‘1’)

and RP //RAP //RAP (‘0’,‘1’,‘1’) to realize MAJ operation.

TABLE I
CONFIGURATION OF ENABLE BITS FOR SA-I.

In-memory
Operations

read
OR2/
NOR2

AND2/
NAND2

MAJ/
MIN

XOR2/
XNOR2

ENM 1 0 0 0 0
ENOR2 0 1 0 0 1
ENMAJ 0 0 0 1 0
ENAND2 0 0 1 0 1

Besides the aforementioned single-cycle operations, the

accelerator’s sub-arrays can perform addition/subtraction

(add/sub) operation very efficiently in two cycles. In the first

cycle, Carry-out bit of the Full-Adder (FA) Boolean function

can be produced by MAJ function (Carry in Fig. 3a) by

enabling ENMAJ . Accordingly, we devised a latch after SAs

to save intermediate data for carry such that it can be applied

in summation of next bits. In the second cycle, by inserting a

2-input XOR gate in reconfigurable SA, Sum output can be ob-

tained through XOR3 operation. Thus, considering A, B and

C operands, the 2- and 3-input in-memory mechanisms could

efficiently generate Sum(/Difference) and Carry(/Borrow) bits

in two memory cycles.

c) SA-II: The SA-II, as illustrated in Fig. 3b, has 3 sub-

SAs and totally 6 reference-resistance branches that could be

enabled by enable bits (ENM , ENOR3, ENOR2, ENMAJ ,

ENAND3, ENAND2) by the Ctrl to implement the memory

and computation modes based on Table II. SA-II realizes

memory read and single-threshold logic operations through

activating one enable in either branches at a time. Additionally,

by activating more than two enables at a time, more thatn on

logic functions could be simultaneously realized with SAs that

could be employed to generate complex multi-threshold logic

functions such as XOR3/XNOR3.

The computational sub-array can also perform add/sub
operation based on SA-II but in a single cycle. With an

observation on the FA truth table, it can be observed that for

6 out of 8 possible input combinations, Sum output equals

inverted Carry signal. Besides, as discussed in SA-I, FA’s

Carry is directly generated by MAJ function. Based on this,

SA-II can realize such Sum and Carry outputs readily by MIN
and MAJ functions, respectively. Fig. 3b shows that the Sum bit

is achieved from the SA’s MIN output. But, in order to consider

two extreme cases namely (0,0,0) and (1,1,1), we need to

disconnect the MIN signal from Sum or else wrong result is

achieved. It turns out that for these two cases, Sum signal can

be implemented respectively by NOR3 (when T1:ON, T2:OFF

→ Sum=0) and NAND3 functions (when T1:OFF, T2:ON →
Sum=1). This is implemented by inserting four additional pass

transistors (two in the MIN function path for disconnecting

the MIN signal and two to connect the Sum output to the

corresponding GND or Vdd). It is worth pointing out that Sum

output is the XOR3 function, thus the SA-II can realize 2-/3-

input XOR/XNOR functions as well, without additional XOR

gates like state-of-the-art designs [7], [18]. Considering A, B
and C as input operands, 3-input in-memory logic with SA-II

design outputs Sum(/Difference) and Carry(/Borrow) bits in

only one memory cycle. The presented accelerator with SA-II

could be considered as the first processing-in-MRAM platform

capable of performing bulk in-memory addition in a single

cycle, where for example processing-in-DRAM platforms such

as Ambit [18] require over 10 cycles.

TABLE II
CONFIGURATION OF ENABLE BITS FOR SA-II.

Ops. read
OR2/
NOR2

AND2/
NAND2

MAJ/
MIN

OR3/
NOR3

AND3/
NAND3

Add/
XOR3/XNOR3
XOR2/XNOR2

ENM 1 0 0 0 0 0 0
ENOR2 0 1 0 0 0 0 0
ENAND2 0 0 1 0 0 0 0
ENOR3 0 0 0 0 1 0 1
ENAND3 0 0 0 0 0 1 1
ENMAJ 0 0 0 1 0 0 1

B. Reliability Analysis

To analyze the impact of process variation and the variation

tolerance of the presented sensing circuits, we ran Monte-Carlo

simulation with 10000 iterations. We add σ = 2% variation to

the RAP (Resistance-Area product) and a σ = 5% variation

to the TMR (Tunneling MagnetoResistive). Fig. 4 depicts the

sense voltage simulation result for the sense margin for single-

cell memory read, 2 fan-in in-memory logic and 3 fan-in in-

memory operations. We observe that voltage sense margin

gradually diminishes by increasing the number of selected

cells. To avert the logic failure and enhance the reliability

of SA outputs, the number of sensed cells are limited to

maximum three. Our simulations show that such sense margin

could be further enhanced by increasing either the MTJ’s oxide

2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 01,2020 at 21:42:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Monte-Carlo simulation of Vsense for (top) read operation, and bit-line
computation with (middle) two selected SOT-MRAM bit-cells (down) three
selected SOT-MRAM bit-cells.

thickness or the sense current, but by sacrificing the energy-

efficiency of the platform.

C. Convolution Schemes

a) Bit-wise Adder: As mentioned earlier, add/sub ac-

counts for the major computational load of BWNNs as it is

iteratively used in different layers and takes up the majority

of the run-time in these networks. As the most crucial unit of

the accelerator, add/sub unit must show resource-efficiency

and high throughput while handling various input bit-widths

at run-time. Here, we present a parallel in-memory adder

(/subtractor) scheme on top of 2-/3-input in-memory logic

mechanisms discussed in previous subsections to accelerate

multi-bit add/sub operations.

Fig. 5a shows the required data organization and also

computation steps for binary-weight layers of BWNNs. Fig. 5b

gives a straightforward example only assuming add operations

based on SA-I design. Obviously sub could be implemented

based on add.

(1) First, the PIM accelerator selects c channels (here, 4)

from input batch with the size of kh × kw (here, 3×3) and

outputs a batch (called combined batch) according to the

binary kernel batch {-1,+1}. This operation is easily performed

by altering the sign-bit of input according to kernel data (f1
∗ −1 = −f1). (2) Now, as depicted in Fig. 5a, channels

of the combined batch are transposed and mapped to dif-

ferent sub-arrays. From computational throughput standpoint,

assuming n-activated sub-arrays (x×y), add/sub operation

of maximum x elements of m-bit (3m + 2 ≤ y) could be

performed in parallel in each sub-array. Thus, the accelerator

could process n × x elements. (3) To generate the output

feature maps in parallel, the accelerator’s in-memory adder

now operates. Fig. 5a R.H.S. shows the sub-array organization

for such parallel in-memory operation. We considered m
(here, 4) reserved rows for Sum and 2 reserved rows for

Carry that are preset to zero. Furthermore, we show the SA

latch’s current state (Q) and the next state (Q*). In Fig. 5b,

we take the add operation of two matrices (Ch1 and Ch2)

with 4-bit data to explain how the platform operates. We

use bit-line alignment technique for add operation where

two corresponding operands in different matrices have to be

aligned in the same bit-line before performing the operation.

Fig. 5. (a) Memory organization, mapping and computing steps of binary-
weight layers, (b) Parallel in-memory addition operation for sum and carry-out
logic.

As shown, Ch1 and Ch2 elements are aligned in the same

sub-array where the elements are consecutively stored within

8 rows.

The add operation begins with the LSBs of the two ele-

ments and goes to MSBs. Two cycles are considered for every

bit-position computation with four steps as shown by S1, S2,

C1 and C2 in Fig. 5b. In S1, 2 RWLs (LSBs) and Latch (preset

to zero) are activated to produce the sum according to the

mechanism presented in the previous subsections. During S2,

a WWL is enabled to store back the resultant Sum. During C1,

2 operands and one of the reserved Carry rows are activated to

produce the carry-out again using bit-line computation mode

of the platform. In C2, a WWL is enabled to store back such

carry-out result simultaneously into a reserved row and in the

latch. This carry-out bit every time overwrites the carry latch

data and is considered as the carry-in of the next computation

cycle. This computation ends after 2×m cycles (m is # bits

in elements).

b) Bit-wise Convolver: The BWNNs consist of few other

layers, in addition to binarized layers, i.e. first layer that

takes image as inputs, not implemented by add/sub and

Fully-Connected (FC) layers. It is worth mentioning that FC

layers are equivalently implemented by bit-wise convolution

operations with 1×1 kernels [1]. Such layers are accelerated by

exploiting AND and count operations as thoroughly explained

in [1], [5], [22]. The 2-input in-memory AND mechanism of

the accelerator could be leveraged to process bulk bit-wise

2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 01,2020 at 21:42:44 UTC from IEEE Xplore. Restrictions apply.

AND logic. Moreover, count operation is converted to addition

of bits. In the interest of space, we omit the hardware design

of this part and allude the readership to IMCE platform [5].

IV. EXPERIMENTAL RESULTS

Here, we compare our MRAM platform with two SA

configurations (SA-I and SA-II) with various BWNNs ac-

celeration methods based on DRAM, GPU, and ASIC. It is

clear that the larger chip area is, then the higher performance

for our platform and other accelerators are achieved due to

having additional sub-arrays or computational units, albeit

the memory die size impacts the area cost. To have a fair

comparison in this work, we report the area-normalized results

(performance/energy per area), henceforth.

a) Configuration: MRAM: We use 512Mb total capacity

with 256x512 memory sub-array organized in a H-tree routing

manner. Accordingly, we developed an extensive bottom-up

evaluation framework with two new simulators. For the device

simulations, NEGF and LLG with spin Hall effect equations

were taken to model SOT-MRAM bit-cell [5], [14]. At circuit

level, we develop a Verilog-A model for 2T1R bit-cell, which

can be used along with interface CMOS circuits in Cadence

Spectre. We specifically used 45nm NCSU PDK library [23] to

assess the presented circuit designs and obtain the performance

metrics. At architectural level, based on the device-circuit

results, we first extensively modified NVSim [24]. It can

change the configuration files (.cfg) according to the various

memory array organization and assess the the accelerator

performance for PIM operations. Then, we develop a behav-

ioral simulator in Matlab that assess the energy and latency

parameters on BWNNs. Besides, we integrated our mapping

optimization algorithm to increase the throughput w.r.t. the

available resources. DRAM: We designed a processing-in-

DRAM platform based on DRISA platform [25] for BWNNs.

Here, we specifically use the 1T1C-adder mechanism to com-

pare the platforms. This mechanism mainly adds a very large

n-bit adder circuitry after SAs to do n-bit BLs addition. For

simulations, CACTI [26] was modified. We also implemented

the adders and controllers in Design Compiler [27]. GPU: We

exploited the NVIDIA GTX 1080Ti Pascal GPU with 3584

CUDA cores with 11TFLOPs peak performance. NVIDIA’s

system management interface was used to evaluate the energy

consumption. Here, we shrunk the results by 50% to eliminate

the energy used for cooling. ASIC: We implemented an ASIC

accelerator based on YodaNN [19] and synthesized the design

with Design Compiler [27] with 45 nm technology. CACTI

tool was used to estimate the SRAM and eDRAM performance

[28].

We use a DNN with following configuration: six convolu-

tional layers (binary-weight), two pooling layers (average) and

two FCs. We avoid quantizing the first and last layers [1], [5]

to prevent any degradation in prediction accuracy. An 8-bit

configuration of the inputs is also considered for evaluation.

For the data-set, we select the SVHN with 32×32 cropped

colored images centered around each digit. We then re-sized

the images to 40×40 before feeding to the model.

b) Energy Consumption & Performance: Fig. 6a depicts

the MRAM platform’s energy consumption results (consider-

ing the number of frames per joule) versus other accelerators

to run the same model and network having two batch sizes

i.e. 8/32. It can be observed that the lower energy-efficiency

is obtained when batch is larger. Besides, we can see that

MRAM solution with SA-I configuration is selected as the

most energy-efficient design compared with others due to its

fully-parallel and energy-saving and operations. It indicates

1.2× and 3.9× on average better energy-efficiency than that

of MRAM-SA-II and DRAM 1T1C-adder platforms. DRAM-

based PIM accelerators [25] suffer a high refresh power.

Besides due to charge sharing characteristic of capacitors, they

deal with data-overwritten bottleneck. As result a result of

this issue, the computation ultimately overwrites the initial

operands. For alleviating this issue, the researchers have come

up with multi-cycle operations leading to even degrading the

PIM platform’s performance [11], [18]. It is worth pointing

out that in DRAM-1T1C-adder platform, an n-bit adder is de-

signed after SAs, however it cannot provide better performance

because of its intrinsically non-parallel operations that limits

its energy-saving. In addition, we can see that MRAM platform

shows ∼33.8× more energy-efficiency compared with ASIC-

256 solution. This reduction is basically from: (1) the energy-

efficient add/sub operations in the presented accelerator that

replace the computationally-intensive standard convolution, (2)

the high resource-utilization ratio of the MRAM platform as

compared with limited and multiplexed computation in ASIC

design. Fig. 6a depicts that MRAM platform achieves ∼72×
better energy-efficiency compared to the GPU.

8 32
10-2

10-1

100

101

P
er

f./
A

re
a

(f
r.

/s
/m

m
2
)

MRAM-SA-I MRAM-SA-II DRAM GPU ASIC-256

8 32
10-3

10-2

10-1

100

E
ne

rg
y

ef
f./

A
re

a
(f

r/
J/

m
m

2)

72

33.8

3.9

1.2
1.3

9.2

45

127

(a) (b)

Fig. 6. (a) Energy-efficiency and (b) Performance evaluation of different
accelerators for running BWNNs normalized to area (Y-axis=Log scale).

Fig. 6b illustrates the MRAM platform’s performance re-

sults (frames per second). Based on this figure, we can see

that MRAM with SA-II configuration is ∼1.3× faster than

that of SA-I solution mainly owning to its one-cycle addition

scheme. Note that, as the results are normalized to area and

SA-II configuration imposes larger area overhead than that that

of SA-I design, we cannot observe a remarkable performance

improvement in this case. MRAM with SA-II configuration

platform outperforms DRAM and ASIC solutions by 9.2×
and 127×, respectively. This is coming from: first, parallel

and high-speed in-memory logic operations of the MRAM

platform versus multi-cycle processing-in-DRAM operations

and second, the widening mismatch between data transfer

2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 01,2020 at 21:42:44 UTC from IEEE Xplore. Restrictions apply.

and computation in ASIC platform and even 1T1C-adder

solution. We can also observe that the higher performance

is achieved for MRAM platform solution compared DRAM

as the batch size is getting larger. This is because its more

paralleled computations. Compared to GPU-based solution,

MRAM platform can obtain roughly 45× higher performance

normalized to area.

c) Area Overhead: To estimate the area overhead of

two configurations of MRAM platform, three main hardware

cost sources must be taken into consideration. First, add-

on transistors to SAs connected to each BL. Second, the

modified MRD overhead; we modify each WL driver by

adding two more transistors in the typical buffer chain. Third,

the Ctrl’s overhead to control enable bits; ctrl generates the

activation bits with MUX units with 6 transistors. Overall,

the presented processing-in-MRAM platform based in SA-I

imposes 5.8% overhead to main memory die, where SA-II

imposes 7.9%. Fig. 7 reports such area overhead breakdown

for two configurations.

(a) (b)
Fig. 7. Area overhead of processing-in-MRAM platform with (a) SA-I and
(b) SA-II.

V. CONCLUSION

In this paper, we reviewed some of our recent Processing-

in-Memory accelerators based on MRAM computational sub-

arrays to efficiently accelerate the inference process of

BWNNs within digital non-volatile memory rather than us-

ing analog crossbar operation. We especially investigated the

performance of two distinct in-memory addition schemes

compared to other digital methods based on processing-in-

DRAM/GPU/ASIC design to tackle DNN power and memory

wall bottleneck.
ACKNOWLEDGEMENTS

This work is supported in part by the National Science

Foundation under Grant No. 1740126, Semiconductor Re-

search Corporation nCORE, Cyber Florida Collaborative Seed

Award Program and UCF NSTC Research Seed Award.

REFERENCES

[1] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[2] M. Courbariaux et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in Advances in Neural Infor-
mation Processing Systems, 2015, pp. 3123–3131.

[3] J. Song, “Binary generative adversarial networks for image retrieval,”
arXiv preprint arXiv:1708.04150, 2017.

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 27–
39.

[5] S. Angizi, Z. He, F. Parveen, and D. Fan, “Imce: energy-efficient bit-wise
in-memory convolution engine for deep neural network,” in Proceedings
of the 23rd Asia and South Pacific Design Automation Conference.
IEEE Press, 2018, pp. 111–116.

[6] S. Angizi, Z. He et al., “Cmp-pim: an energy-efficient comparator-based
processing-in-memory neural network accelerator,” in Proceedings of the
55th Annual Design Automation Conference. ACM, 2018, p. 105.

[7] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in Proceedings of the 45th Annual International
Symposium on Computer Architecture. IEEE Press, 2018, pp. 383–396.

[8] S. Angizi, Z. He, and D. Fan, “Parapim: a parallel processing-in-memory
accelerator for binary-weight deep neural networks,” in Proceedings of
the 24th Asia and South Pacific Design Automation Conference. ACM,
2019, pp. 127–132.

[9] S. Angizi et al., “Dima: a depthwise cnn in-memory accelerator,” in
ICCAD. IEEE, 2018, pp. 1–8.

[10] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Aligns: A processing-in-
memory accelerator for dna short read alignment leveraging sot-mram,”
in Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 2019, p. 144.

[11] S. Angizi and D. Fan, “Graphide: A graph processing accelerator
leveraging in-dram-computing,” in GLSVLSI. ACM, 2019, pp. 45–50.

[12] S. Angizi, Z. He, F. Parveen, and D. Fan, “Rimpa: A new reconfigurable
dual-mode in-memory processing architecture with spin hall effect-
driven domain wall motion device,” in ISVLSI. IEEE, 2017, pp. 45–50.

[13] S. Angizi, Z. He, A. Awad, and D. Fan, “Mrima: An mram-based in-
memory accelerator,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2019.

[14] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, 2016.

[15] Z. He et al., “High performance and energy-efficient in-memory com-
puting architecture based on sot-mram,” in NANOARCH. IEEE, 2017,
pp. 97–102.

[16] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan, “Design and evaluation
of a spintronic in-memory processing platform for nonvolatile data
encryption,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 9, pp. 1788–1801, 2017.

[17] S. Jain et al., “Computing in memory with spin-transfer torque magnetic
ram,” IEEE TVLSI, pp. 470–483, 2018.

[18] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Micro. ACM, 2017,
pp. 273–287.

[19] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture
for ultralow power binary-weight cnn acceleration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 1, pp. 48–60, 2017.

[20] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in 2016 53nd
DAC. IEEE, 2016.

[21] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Graphs: A graph processing
accelerator leveraging sot-mram,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 378–383.

[22] S. Angizi and D. Fan, “Imc: energy-efficient in-memory convolver
for accelerating binarized deep neural network,” in Proceedings of the
Neuromorphic Computing Symposium. ACM, 2017, p. 3.

[23] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[24] X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15–50.

[25] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 288–301.

[26] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked dram
main memory,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2012, pp. 33–38.

[27] S. D. C. P. V. . Synopsys, Inc.
[28] N. Muralimanohar et al., “Cacti 6.0: A tool to model large caches,” HP

Laboratories, pp. 22–31, 2009.

2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 01,2020 at 21:42:44 UTC from IEEE Xplore. Restrictions apply.

